Deterministic Solution of the Boltzmann Equation Using a Discontinuous Galerkin Velocity Discretization
نویسندگان
چکیده
We propose an approach for high order discretization of the Boltzmann equation in the velocity space using discontinuous Galerkin methods. Our approach employs a reformulation of the collision integral in the form of a bilinear operator with a time-independent kernel. In the fully non-linear case the complexity of the method is O(n8) operations per spatial cell where n is the number of degrees of freedom in one velocity direction. The new method is suitable for parallelization to a large number of processors. Techniques of automatic perturbation decomposition and linearisation are developed to achieve additional performance improvement. The number of operations per spatial cell in the linearised regime is O(n6). The method is applied to the solution of the spatially homogeneous relaxation problem. Mass momentum and energy is conserved to a good precision in the computed solutions.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملRunge - Kutta Discontinuous Galerkin Method for the Boltzmann Equation
In this thesis we investigate the ability of the Runge-Kutta Discontinuous Galerkin (RKDG) method to provide accurate and efficient solutions of the Boltzmann equation. Solutions of the Boltzmann equation are desirable in connection to small scale science and technology because when characteristic flow length scales become of the order of, or smaller than, the molecular mean free path, the Navi...
متن کاملA high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations
We present a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier-Stokes equations in convection-dominated flows using triangular and tetrahedral meshes. The scheme is based on a semi-explicit temporal discretization with explicit treatment of the nonlinear term and implicit treatment of the Stokes operator. The nonlinear term is discretized in divergence form ...
متن کاملA Galerkin Method for the Simulation of the Transient 2-D/2-D and 3-D/3-D Linear Boltzmann Equation
Many production steps used in the manufacturing of integrated circuits involve the deposition of material from the gas phase onto wafers. Models for these processes should account for gaseous transport in a range of flow regimes, from continuum flow to free molecular or Knudsen flow, and for chemical reactions at the wafer surface. We develop a kinetic transport and reaction model whose mathema...
متن کاملDiscretization of the Boltzmann equation in velocity space using a Galerkin approach
A method for the discretization of the Boltzmann equation in velocity space via a Galerkin procedure with Hermite polynomials as trial and test functions is proposed. This procedure results in a set of partial differential equations, which is an alternative to the lattice-Boltzmann equations. These PDEs are discretized using an explicit finite difference scheme and a numerical example shows the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012